Algebra (Classic Version) (Pearson Modern Classics for Advanced Mathematics Series)
L**Y
Non-standard but Special Algebra Textbook
It is true that this is an atypical Abstract Algebra book, but that is one reason why this is an awesome book to use! We used this book in the Honors: Abstract Algebra course, and it was my first upper division Mathematics course. While it is not the easiest for a first course in Abstract Algebra, an advanced undergraduate student can certainly get a lot out of this text. Artin makes a point in the preface that his book shifts the focus of the standard Algebra course to Linear Algebra, so if you enjoy Linear Algebra, you will love the types of topics this book covers. Artin's book seems to touch on many topics that a standard Abstract Algebra course may brush over. (There are entire chapters covering Group Representation Theory, the Special Unitary Group, and Quadratic Number Fields, which are just a few examples of topics that standard Algebra textbooks may not even mention). Artin is an Algebraic Geometer, for example, his chapter on Symmetry Groups requires that you really understand what some of these structures look like in space, but IMHO, it makes these topics that much more interesting. Depending on the subfields of Algebra that you are interested in, this could not be a good book for you. But Artin's writing style provides a lot of intuition for the reader, while leaving a lot for you to discover as you work through the problems. In my opinion, you can expand on a lot on the information given in the book as you study with it. Not all of the exercises are straight forward or cut and dried, but the level of abstraction that some of these problems require would be very beneficial for someone with an interest in Algebra. I will not lie, since we used this in my first upper division math course, it was VERY challenging for me at first. Some of the exercises in the book may be very over your head when you first see them; many of them certainly were for me at first, and some of the others still are quite challenging for me. But after two semesters in an accelerated Abstract Algebra course using this text, I have become so comfortable with Algebra, and have grown so much mathematically. If you put the time and effort into learning with this book, you will have an understanding of Algebra that you will not get from many other undergraduate books.
A**R
the cover can be damaged easily. Yet it is definitely worth the 100$ one ...
I don't think that there is any need for promoting this book. It is a must for every mathematics student. I had exposure to most of the materials of the 10 chapters of this book previously. However I was interested to review some of these materials from this book. I found it very clear both in proofs and in the presentation of topics. Therefore it is very well suited for self-study. The exercises are very pedagogical and are a main part of this book because very often new topics are introduced. I got the paperback edition. While the quality of the papers is acceptable (it is a little bit yellowish though), the cover can be damaged easily. Yet it is definitely worth the 100$ one can save over the original edition.
C**E
Great book if idiosyncratic treatment
I recommend this alongside the heavy hitters like D &F, Hungerford, Lang. It is a nicely written and very clear treatment but of necessity has to be somewhat selective for its size. Price is right and unlike my D & F and Hungerford, the binding hasn't split!
M**O
Good, challenging book
I used this book in an advanced algebra course in which the students learned on their own with minimal guidance from the professor and discussed the assigned readings and homework once a week. I found this book difficult for self-learning. Artin aims for concision in his proofs, making the reader prove some things on his own. This is not necessarily bad, and is often very helpful for the student's learning. But it can be tough and frustrating if you need a hint, or get lost in a proof. In other words, it's perfectly good to leave steps for the reader, provided that the reader can actually fill in the gaps. For that reason, I think this book is best used as a supplement to a professor's lectures, rather than for self-learning. This book does a good job of condensing the material, and the theorems are easy to find, so it is useful when reviewing. I like the topics in the book. One of the aims of this book is to introduce the reader to the various applications of algebra. To this end Artin includes not only the typical algebra material, but also symmetry and imaginary quadratic fields. Unfortunately I found the second edition worse than the first edition in its chapters on fields. Artin took out many examples in the first edition, for reasons I don't know. The chapter on fields is full of definitions and theorems, but in my mind it doesn't elucidate the main ideas and themes effectively. I think Dummit and Foote is much better at explaining basic Galois theory. The exercises, though, are very good. Overall, this is a challenging book; when used effectively in a well-taught course (for example, see Benedict Gross's excellent free online videos on algebra), it should prove to be very rewarding.
E**G
False advertisement
This is NOT the edition shown in the picture -- it's the Indian International edition, a cheaper knock-off which is missing Ch.16 on Galois Theory. Don't waste your money -- if you don't need Ch.16, you can get the Indian edition cheaper elsewhere. If you do, don't buy this, or you'll be as out of luck as I am right now.
A**R
Not bad for references
If you are looking to learn from this book, stay away.If you are looking for a decent reference book, go ahead and snag it. There is not in much of way of proofs and examples.Used this for a class and ended up needing two or three other books to see what proofs were left out.
ترست بايلوت
منذ أسبوع
منذ 3 أسابيع